Coupled-channels approaches to meson He way to the N*s production reactions

Bruno Juliá-Díaz

Departament d'Estructura i Constituents de la Matèria

Universitat de Barcelona (Spain)

(4 TUS), T | Hz | R Mz, 4 Z, T > EBAC

Dedicated to the memory of Dick Arndt (1933-2010)

• N* physics

Current coupled-channels efforts

QCD

- Baryon spectrum, N* program
- Mesons, exotics, glueballs

UNIVERSITAT DE BARCELONA

B

Where are the N*?

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

Exciting the substructure we **learn about the forces which keep the quarks together**. E.g. the naïve **quark model picture predicts** states are:

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

The Δ (1232) and others

Electromagnetic probes

Courtesy of D. Leinweber

- Jefferson LAB (USA)
- GRAAL (Grenoble)
- MAMI (Mainz)
- BATES (MIT)
- ELSA (Bonn)
- SPring 8 (Japan)

Originaly, the hope was that probing the structure with electrons would minimize the "hadronic" debris, providing a cleaner access to the properties of nucleons and resonances

High precision (new&old) data

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

PDG *s and N*'s origin

Particle	$L_{2I\cdot 2}$	_J status	$N\pi$	$N\eta$	ΛК		A	All o	of the	es
N(939)	P_{11}	****					(mo	st) p	prope	ert
N(1440)	P_{11}^{11}	****	****	*			state	es ĥ	owey	VF
N(1520)	D_{13}^{11}	****	****	***			State	, II		
N(1535)	S_{11}	****	****	****						
N(1650)	S_{11}^{-1}	****	****	*	***					
N(1675)	D_{15}^{11}	****	****	*	*				,	
N(1680)	F_{15}	****	****	*			****	***		
N(1700)	D_{13}	***	***	* 🤈	**	*	**			
N(1710)	P_{11}^{10}	***	***	**	**	*	**		***	
N(1720)	P_{13}^{11}	****	****	*	**	*	*	**	**	
N(1900)	P_{13}^{-10}	**	**	2				*		
N(1990)	F_{17}	**	**	*	*	*			*	
$\Delta(1232)$	P_{33}	****	****	F					****	
$\Delta(1600)$	P_{33}	***	***	0			***	*	**	
arDelta(1620)	S_{31}	****	****	r			****	****	***	
$\Delta(1700)$	D_{33}	****	****	b		*	***	**	***	
$\Delta(1750)$	P_{31}	*	*	2						
$\Delta(1900)$	S_{31}	**	**		ł	*	*	**	*	
$\Delta(1905)$	F_{35}	****	****		d	*	**	**	***	
$\Delta(1910)$	P_{31}	****	****		e	*	*	*	*	
$\Delta(1920)$	P_{33}	***	***	0	n	*	**		*	
$\Delta(1930)$	D_{35}	***	***			*			**	
$\Delta(1940)$	D_{33}	*	*	F						
$\Delta(1950)$	F_{37}	****	****	0		*	****	*	****	

All of these studies essentially agree on the existence and most) properties of the 4-star states. For the 3-star and lower tates, however, even a statement of existence is problematic.

GWU, PRC 74 045205 (2006)

Are they all genuine quark/gluon excitations (with meson cloud) ?

meson cloud

$$|N^*\rangle = |qqq\rangle + |\text{m.c.}\rangle$$

Is their origin dynamical ?
 → some could be understood as arising from meson-baryon dynamics

 $|N^*\rangle = |MB\rangle$

Basic Goal

Resonances can be regarded as correlations among all the data:

UNIVERSITAT DE BARCELON/

A combined study is essential

Recent example: Zagreb group's analysis of P₁₁(1710). Emphasizing the capital importance of including $\pi N \rightarrow \eta N$. Ceci, Svarc, Zauner, PRL (2006)

Models should be built in a flexible way allowing N* to show up in any channel

Production of mesons

Main elements:

- 1. Strong-strong interactions
- 2. Hadronic structure of Resonances
- 3. Electromagnetic structure of Resonances

Multi step (unitarity)

Production of mesonbaryon final states

• Directly

- Through MB states
- Through MMB states

→ Multi-step processes should be taken into account: Coupled-channels

Reaction theory ingredients

Full integration? K matrix?

Bare N* seeds in the model?

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

Skecth of coupled channels models

- K matrix and related models:
 - Phenomenological
 - SAID, Bonn-Gatchina, MAID
 - Unitarized chiral models
 Valencia, GSI, ...

Effective lagrangians Giessen, KVI

H. Kamano (5B)

S. Nakamura (5B)

- Dynamical Coupled-Channels
 - EBAC@JLAB, Juelich, Mainz&Taipei, ...

M. Doring (4D), F. Huang (4B)

S. Krewald (5B)

	Unitarized Chiral	Dynamical CC	K MATRIX	
Example	e.g. Valencia	e.g EBAC	e.g. GWU/SAID	
Channels	πΝ, ηΝ, ΚΥ	πN , ηN , σN , ρN , $\pi \Delta$, KY	πΝ, ηΝ	
Dynamics	K matrix	T matrix	K matrix +DR	
Kernel	Weinberg-Tomozawa	Meson Exchange	Polynomia	
Bare N* seeds	NO	Minimal number	NO	

Example: MSL (used at EBAC)

✓ Partial wave amplitude of $a \rightarrow b$ reaction:

$$T_{a,b}(p_a, p_b; E) = V_{a,b}(p_a, p_b; E) + \sum_c \int_0^\infty q^2 dq V_{a,c}(p_a, q; E) G_c(q; E) T_{c,b}(q, p_b; E)$$

Reaction channels:

✓ Potential:

2-body v potential (no $\pi\pi N$ cut)

2-body Z potential (with $\pi\pi N$ cut)

UNIVERSITAT DE BARCELON/

A. Matsuyama, T. Sato, T.-S.H. Lee, Phys. Rep. 2007

Two body v's (strong)

Two body v's (e.m.)

BJ-D, Lee, Matsuyama, Sato, Phys. Rev C (2007)

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

B

Kamano, BJ-D, Lee, Matsuyama, Sato, Phys. Rev C (2009)

BJ-D, Matsuyama, Lee, Sato, Smith, Phys. Rev. C(2008)

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

B

- 2. Dashed only πN intermediate (in e.m. piece)
- 3. Data from CLAS http://clasweb.jlab.org/physicsdb/
- BJ-D, Kamano, Matsuyama, Lee, Matsuyama, Sato, Suzuki, Phys. Rev. C (2009)

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

B

πN→	πN	ππΝ	ηΝ	ΚΛ
γN→				ΚΣ
SAID				
Bonn-Gatchina				
EBAC			•★	**
Juelich-UGA	•★			

In progress

UNIVERSITAT DE BARCELON/

From T. Sato review talk "EBAC meeting", May 2010

Timeline of DCC efforts

🔵 = 1 Paper

UNIVERSITAT DE BARCELONA

N*, Δ * (with 4* in pdg)

	Re z ₀ [MeV]	-2 lm <i>z</i> 0 [MeV]			Re z ₀ [MeV]	-2 lm z ₀ [MeV]	
N* (1440) P ₁₁ JUELICH EBAC ARN HOE Bonn-Gatchina	1387, 1387 1357, 1364 1359, 1388 1385 1371± 7	147, 142 152, 210 162, 166 164 192 \pm 20	<1.5%	Δ(1232) P ₃₃ JUELICH EBAC ARN HOE	1218 1211 1211 1209	90 100 99 100	
N^* (1520) D_{13} JUELICH EBAC ARN HOE Bonn-Gatchina	1505 1521 1515 1510 1509 \pm 7	95 116 113 120 113±12	<5.5%	$\Delta^{*}(1620) S_{31}$ JUELICH EBAC ARN HOE Bonn-Gatchina	1593 1563 1595 1608 1615 \pm 25	72 190 135 116 180 \pm 35	
N ⁻⁺ (1535) S ₁₁ JUELICH EBAC ARN HOE Bonn-Gatchina	$1519 \\ 1540 \\ 1502 \\ 1487 \\ 1508 {+10 \atop -30}$	129 382 95 165 ±15	<15%	$\Delta^{*}(1700) D_{33}$ JUELICH EBAC ARN HOE Bonn-Gatchina $\Delta^{*}(1905) F_{25}$	1637 1604 1632 1651 1610 \pm 35	$236 \\ 212 \\ 253 \\ 159 \\ 320 \pm 60$	
N* (1650) S ₁₁ JUELICH EBAC ARN HOE Bonn-Gatchina	1669 1642 1648 1670 1645 \pm 15	136 82 80 163 187±20	<500/	JUELICH EBAC ARN HOE	NPW 1738 1819 1829	NPW 220 247 303	
N* (1675) D ₁₅ JUELICH EBAC ARN HOE Bonn-Gatchina	1654 1657 1656 ± 8 1639 ± 10	NPW 154 139 126 180± 20	<30%	$\Delta^* (1910) P_{31}$ JUELICH EBAC ARN HOE	1840 — 1771 1874	221 479 283	
N^* (1680) F_{15} JUELICH EBAC ARN HOE Bonn-Gatchina	NPW 1674 1674 1673 1674±5	NPW 106 139 126 95±10	JUEL	Δ* (1950) F ₃₇ JUELICH EBAC ARN HOE	NPW 1858 1876 1878 NPA 829, 170 (NPW 200 227 230 2009)	
N* (1720) P ₁₃ JUELICH	1663	212	EBAC : Suzuki et al., PRL 104, 042302 (2010)				
EBAC ARN			ARNDT : Arndt et al., PRC 74 (2006) HOELER : Höhler, πN Newsl. 9 (1993)				
HOE Bonn-Gatchina	$1686 \\ 1630 \pm 90$	187 460±80	Bonn-Gatchina : Thoma et al. PLB659, 87 (2008). ∢ 🚞 🕨				

B. Juliá-Díaz, MENU, College of William & Mary, May 31st 2010

UNIVERSITAT DE BARCELONA

Concluding remarks (1)

- $\circ~$ The spectrum of low lying N* and $\Delta *$ is an essential feature of QCD
- There is an increasingly large high-precision database
- Extracting the properties of all resonances from the data for further comparison with QCD requires an important theoretical effort
- Recent developments have boosted the state-of-the-art of dynamical coupled-channels analyses (notably the creation of the Excited Baryon Analysis Center (2006))
 - Ambitious reaction theory
 - Meson-exchange kernels
 - Use of supercomputing resources,

e.g. NERSC, Barcelona, Jülich, Argonne

universitat DE BARCELON/

• Broad range of W and Q^2

Concluding remarks (final)

With the help of recent dedicated workshops worldwide, the common difficulties faced by the different groups have been identified, notably:

- 1. The need to **consistently analyze** hadro- and electro-production reactions
- 2. Need of multi-channels models to ensure correlations between all extant data are taken into account.
- 3. Use of analytic extrapolation methods to extract properties of resonances (pole positions, residues)

With the proper support, these efforts will settle the properties of known, and still to be discovered, low lying baryon resonances or more exotic baryons

M. Doring (4D), J. Garzon (6B), A. Gasparyan (4D), F. Huang (4B), H. Kamano (5B), S. Krewald (5B), S. Nakamura (5B), M. Paris (5B), A. Sarantsev (5B), L. Tiator (3A)